Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int. microbiol ; 27(1): 303-310, Feb. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-230262

RESUMEN

Pathogenic bacteria have developed several mechanisms to thrive within the hostile environment of the human host, but it is often disregarded that their survival outside this niche is crucial for their successful transmission. Acinetobacter baumannii is very well adapted to both the human host and the hospital environment. The latter is facilitated by multifactorial mechanisms including its outstanding ability to survive on dry surfaces, its high metabolic diversity, and, of course, its remarkable osmotic resistance. As a first response to changing osmolarities, bacteria accumulate K+ in high amount to counterbalance the external ionic strength. Here, we addressed whether K+ uptake is involved in the challenges imposed by the harsh conditions outside its host and how K+ import influences the antibiotic resistance of A. baumannii. For this purpose, we used a strain lacking all major K+ importer ∆kup∆trk∆kdp. Survival of this mutant was strongly impaired under nutrient limitation in comparison to the wild type. Furthermore, we found that not only the resistance against copper but also against the disinfectant chlorhexidine was reduced in the triple mutant compared to the wild type. Finally, we revealed that the triple mutant is highly susceptible to a broad range of antibiotics and antimicrobial peptides. By studying mutants, in which the K+ transporter were deleted individually, we provide evidence that this effect is a consequence of the altered K+ uptake machinery. Conclusively, this study provides supporting information on the relevance of K+ homeostasis in the adaptation of A. baumannii to the nosocomial environment.(AU)


Asunto(s)
Humanos , Homeostasis , Acinetobacter baumannii/genética , Antibacterianos/metabolismo , Proteínas de Transporte de Membrana , Bacterias , Virulencia , Microbiología , Técnicas Microbiológicas , Antibacterianos/farmacología
2.
Int Microbiol ; 27(1): 303-310, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37338636

RESUMEN

Pathogenic bacteria have developed several mechanisms to thrive within the hostile environment of the human host, but it is often disregarded that their survival outside this niche is crucial for their successful transmission. Acinetobacter baumannii is very well adapted to both the human host and the hospital environment. The latter is facilitated by multifactorial mechanisms including its outstanding ability to survive on dry surfaces, its high metabolic diversity, and, of course, its remarkable osmotic resistance. As a first response to changing osmolarities, bacteria accumulate K+ in high amount to counterbalance the external ionic strength. Here, we addressed whether K+ uptake is involved in the challenges imposed by the harsh conditions outside its host and how K+ import influences the antibiotic resistance of A. baumannii. For this purpose, we used a strain lacking all major K+ importer ∆kup∆trk∆kdp. Survival of this mutant was strongly impaired under nutrient limitation in comparison to the wild type. Furthermore, we found that not only the resistance against copper but also against the disinfectant chlorhexidine was reduced in the triple mutant compared to the wild type. Finally, we revealed that the triple mutant is highly susceptible to a broad range of antibiotics and antimicrobial peptides. By studying mutants, in which the K+ transporter were deleted individually, we provide evidence that this effect is a consequence of the altered K+ uptake machinery. Conclusively, this study provides supporting information on the relevance of K+ homeostasis in the adaptation of A. baumannii to the nosocomial environment.


Asunto(s)
Acinetobacter baumannii , Infección Hospitalaria , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Homeostasis
3.
ACS Infect Dis ; 9(11): 2093-2104, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37883671

RESUMEN

Wax esters (WEs) are neutral lipids that are produced by many different bacteria as potential carbon and energy storage compounds. Comparatively little is known about the role of WE in pathogenic bacteria. The opportunistic pathogen Acinetobacter baumannii is a major cause of hospital-acquired infections worldwide. Salt and desiccation resistance foster A. baumannii infections such as urinary tract infections and allow for reinfection when bacteria are taken up from dry surfaces in the hospital environment. Here we report on WE and triacylglycerol (TAG) production in A. baumannii as a response to nitrogen limitation and high salt stress. Fatty acids and fatty alcohols with chain lengths of C16 and C18 were identified as the most prominent WE constituents. We identified the terminal key enzyme of WE biosynthesis, the bifunctional wax ester synthase/acylCoA:diacylglycerol acyltransferase (WS/DGAT) encoded by the wax/dgat gene, and demonstrated that transcription of wax/dgat and production of WS/DGAT are independent of the nitrogen concentration. A Δwax/dgat mutant was impaired in growth in the presence of high salt concentration and was more sensitive to imipenem and reactive oxygen species.


Asunto(s)
Acinetobacter baumannii , Triglicéridos , Acinetobacter baumannii/genética , Especies Reactivas de Oxígeno , Ésteres , Antibacterianos/farmacología , Bacterias , Nitrógeno
4.
mBio ; 14(5): e0213923, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768061

RESUMEN

IMPORTANCE: Currently, the viable but non-culturable (VBNC) state is an underappreciated niche for pathogenic bacteria which provides a continuous source for recurrent infections and transmission. We propose the VBNC state to be a global persistence mechanism used by various A. baumannii strains to cope with many stresses it is confronted with in the clinical environment and in the host. This requires a novel strategy to detect viable cells of this pathogen that is not only based on plating assays.


Asunto(s)
Acinetobacter baumannii , Bacterias
5.
Microb Cell Fact ; 22(1): 187, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726752

RESUMEN

BACKGROUND: Enzymes from thermophiles are of great interest for research and bioengineering due to their stability and efficiency. Thermophilic expression hosts such as Thermus thermophilus [T. thermophilus] can overcome specific challenges experienced with protein production in mesophilic expression hosts, such as leading to better folding, increased protein stability, solubility, and enzymatic activity. However, available inducible promoters for efficient protein production in T. thermophilus HB27 are limited. RESULTS: In this study, we characterized the pilA4 promoter region and evaluated its potential as a tool for production of thermostable enzymes in T. thermophilus HB27. Reporter gene analysis using a promoterless ß-glucosidase gene revealed that the pilA4 promoter is highly active under optimal growth conditions at 68 °C and downregulated during growth at 80 °C. Furthermore, growth in minimal medium led to significantly increased promoter activity in comparison to growth in complex medium. Finally, we proved the suitability of the pilA4 promoter for heterologous production of thermostable enzymes in T. thermophilus by producing a fully active soluble mannitol-1-phosphate dehydrogenase from Thermoanaerobacter kivui [T. kivui], which is used in degradation of brown algae that are rich in mannitol. CONCLUSIONS: Our results show that the pilA4 promoter is an efficient tool for gene expression in T. thermophilus with a high potential for use in biotechnology and synthetic biology applications.


Asunto(s)
Proteínas Fimbrias , Thermus thermophilus , Thermus thermophilus/genética , Temperatura , Regiones Promotoras Genéticas , Genes Reporteros
6.
Int. microbiol ; 26(3): 543-550, Ene-Agos, 2023. graf, ilus
Artículo en Inglés | IBECS | ID: ibc-223980

RESUMEN

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions. This Gram-negative bacterium is one of the most successful human pathogens worldwide and responsible for hospital-acquired infections. This is due to its outstanding potential to adapt to very different environments, to persist in the human host and most important, its ability to develop multidrug resistance. Our combined approach of genomic and phenotypic analyses led to the identification of the envelope spanning Tol-Pal system in A. baumannii. We found that the deletion of the tolQ, tolR, tolA, tolB, and pal genes affects cell morphology and increases antibiotic sensitivity, such as the ∆tol-pal mutant exhibits a significantly increased gentamicin and bacitracin sensitivity. Furthermore, Galleria mellonella caterpillar killing assays revealed that the ∆tol-pal mutant exhibits a decreased killing phenotype. Taken together, our findings suggest that the Tol-Pal system is important for cell morphology, antibiotic resistance, and virulence of A. baumannii.(AU)


Asunto(s)
Humanos , Virulencia , Factores de Virulencia , Farmacorresistencia Microbiana , Forma del Núcleo Celular , Acinetobacter baumannii , Microbiología , Técnicas Microbiológicas
7.
PLoS Genet ; 19(7): e1010646, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37498819

RESUMEN

The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infección Hospitalaria , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Filogenia , Infección Hospitalaria/microbiología , Infecciones por Acinetobacter/microbiología , Hospitales , Antibacterianos
8.
Environ Microbiol ; 25(11): 2416-2430, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522309

RESUMEN

The nosocomial pathogen Acinetobacter baumannii is well known for its extraordinary metabolic diversity. Recently, we demonstrated growth on L-arabinose, but the pathway remained elusive. Transcriptome analyses revealed two upregulated gene clusters that code for isoenzymes catalysing oxidation of a pentonate to α-ketoglutarate. Molecular, genetic, and biochemical experiments revealed one branch to be specific for L-arabonate oxidation, and the other for D-xylonate and D-ribonate. Both clusters also encode an uptake system and a regulator that acts as activator (L-arabonate) or repressor (D-xylonate and D-ribonate). Genes encoding the initial oxidation of pentose to pentonate were not part of the clusters, but our data are consistent with the hypothesis of a promiscous, pyrroloquinoline quinone (PQQ)-dependent, periplasmic pentose dehydrogenase, followed by the uptake of the pentonates and their degradation by specific pathways. However, there is a cross-talk between the two different pathways since the isoenzymes can replace each other. Growth on pentoses was found only in pathogenic Acinetobacter species but not in non-pathogenic such as Acinetobacter baylyi. However, mutants impaired in growth on pentoses were not affected in traits important for infection, but growth on L-arabinose was beneficial for long-term survival and desiccation resistance in A. baumannii ATCC 19606.


Asunto(s)
Acinetobacter baumannii , Arabinosa , Arabinosa/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Isoenzimas/metabolismo , Pentosas/metabolismo , Oxidación-Reducción
9.
Int Microbiol ; 26(3): 543-550, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36648597

RESUMEN

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions. This Gram-negative bacterium is one of the most successful human pathogens worldwide and responsible for hospital-acquired infections. This is due to its outstanding potential to adapt to very different environments, to persist in the human host and most important, its ability to develop multidrug resistance. Our combined approach of genomic and phenotypic analyses led to the identification of the envelope spanning Tol-Pal system in A. baumannii. We found that the deletion of the tolQ, tolR, tolA, tolB, and pal genes affects cell morphology and increases antibiotic sensitivity, such as the ∆tol-pal mutant exhibits a significantly increased gentamicin and bacitracin sensitivity. Furthermore, Galleria mellonella caterpillar killing assays revealed that the ∆tol-pal mutant exhibits a decreased killing phenotype. Taken together, our findings suggest that the Tol-Pal system is important for cell morphology, antibiotic resistance, and virulence of A. baumannii.


Asunto(s)
Acinetobacter baumannii , Humanos , Virulencia/genética , Acinetobacter baumannii/genética , Farmacorresistencia Microbiana
10.
Environ Microbiol ; 24(9): 4437-4448, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35652489

RESUMEN

The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.


Asunto(s)
Acinetobacter baumannii , Acetilcarnitina/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Dióxido de Carbono/metabolismo , Carnitina/metabolismo , Carnitina/farmacología , ADN Intergénico , Humanos , Hidrolasas/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Piruvatos/metabolismo , Virulencia/genética
11.
PLoS Genet ; 18(6): e1010020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653398

RESUMEN

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter calcoaceticus , Infecciones por Acinetobacter/genética , Infecciones por Acinetobacter/microbiología , Acinetobacter calcoaceticus/genética , Carbono , Humanos , Familia de Multigenes/genética , Filogenia , Virulencia
12.
Environ Microbiol Rep ; 14(1): 170-178, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35023294

RESUMEN

Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ß-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (ΔpcaHG) and the catechol-1,2-dioxygenase (ΔcatA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ß-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance.


Asunto(s)
Acinetobacter baumannii , Acinetobacter , Acinetobacter/genética , Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Adipatos/metabolismo , Antibacterianos/farmacología , Benzoatos/metabolismo
13.
Environ Microbiol ; 24(3): 1052-1061, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431198

RESUMEN

Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.


Asunto(s)
Acinetobacter baumannii , Colina-Deshidrogenasa , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Betaína/metabolismo , Colina/metabolismo , Flavoproteínas , Presión Osmótica , Agua
14.
Biochim Biophys Acta Biomembr ; 1864(1): 183818, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774498

RESUMEN

The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1-PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.


Asunto(s)
Transporte Biológico/genética , Membrana Celular/genética , ADN Bacteriano/genética , Proteínas Fimbrias/genética , Comunicación Celular/genética , Membrana Celular/metabolismo , Citosol/metabolismo , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Proteínas Fimbrias/metabolismo , Fagocitosis/genética , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
15.
Microbiol Spectr ; 9(3): e0129621, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34730379

RESUMEN

CsrA is a global regulator widespread in bacteria and known to be involved in different physiological processes, including pathogenicity. Deletion of csrA of Acinetobacter baumannii strain ATCC 19606 resulted in a mutant that was unable to utilize a broad range of carbon and energy sources, including amino acids. This defect in amino acid metabolism was most likely responsible for the growth inhibition of the ΔcsrA mutant in human urine, where amino acids are the most abundant carbon source for A. baumannii. Recent studies revealed that deletion of csrA in the A. baumannii strains AB09-003 and ATCC 17961 resulted in an increase in hyperosmotic stress resistance. However, the molecular basis for this observation remained unknown. This study aimed to investigate the role of CsrA in compatible solute synthesis. We observed striking differences in the ability of different A. baumannii strains to cope with hyperosmotic stress. Strains AB09-003 and ATCC 17961 were strongly impaired in hyperosmotic stress resistance in comparison to strain ATCC 19606. These differences were abolished by deletion of csrA and are in line with the ability to synthesize compatible solutes. In the salt-sensitive strains AB09-003 and ATCC 17961, compatible solute synthesis was repressed by CsrA. This impairment is mediated via CsrA and could be overcome by deletion of csrA from the genome. IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii has become one of the leading causes of nosocomial infections around the world due to the increasing prevalence of multidrug-resistant strains and their optimal adaptation to clinical environments and the human host. Recently, it was found that CsrA, a global mRNA binding posttranscriptional regulator, plays a role in osmotic stress adaptation, virulence, and growth on amino acids of A. baumannii AB09-003 and ATCC 17961. Here, we report that this is also the case for A. baumannii ATCC 19606. However, we observed significant differences in the ΔcsrA mutants with respect to osmostress resistance, such as the AB09-003 and 17961 mutants being enhanced in osmostress resistance whereas the ATCC 19606 mutant was not. This suggests that the role of CsrA in osmotic stress adaptation is strain specific. Furthermore, we provide clear evidence that CsrA is essential for growth in human urine and at high temperatures.


Asunto(s)
Acinetobacter baumannii/crecimiento & desarrollo , Adaptación Fisiológica/genética , Proteínas Bacterianas/genética , Presión Osmótica/fisiología , Orina/microbiología , Acinetobacter baumannii/genética , Proteínas Bacterianas/metabolismo , Eliminación de Gen , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Extremophiles ; 25(5-6): 425-436, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34542714

RESUMEN

Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.


Asunto(s)
Acinetobacter , Acinetobacter/genética , Ambientes Extremos , Transferencia de Gen Horizontal , Thermus thermophilus
17.
Biochim Biophys Acta Biomembr ; 1863(10): 183666, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143999

RESUMEN

Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2/ΔpilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW∆2-40, pilW∆50-150, pilW∆163-216 and pilW∆216-292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.


Asunto(s)
Proteínas Bacterianas/metabolismo , Secretina/metabolismo , Thermus thermophilus/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/química , Biopelículas , Conformación Proteica , Transporte de Proteínas
18.
Int J Med Microbiol ; 311(5): 151516, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34144496

RESUMEN

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. The success of A. baumannii is based on the rise of multiple antibiotic resistances and its outstanding potential to persist in the human host and under conditions of low water activity in hospital environments. Combating low water activities involves osmoprotective measures such as uptake of compatible solutes and K+. To address the role of K+ uptake in the physiology of A. baumannii we have identified K+ transporter encoding genes in the genome of A. baumannii ATCC 19606. The corresponding genes (kup, trk, kdp) were deleted and the phenotype of the mutants was studied. The triple mutant was defective in K+ uptake which resulted in a pronounced growth defect at high osmolarities (300 mM NaCl). Additionally, mannitol and glutamate synthesis were strongly reduced in the mutant. To mimic host conditions and to study its role as an uropathogen, we performed growth studies with the K+ transporter deletion mutants in human urine. Both, the double (ΔkupΔtrk) and the triple mutant were significantly impaired in growth. This could be explained by the inability of ΔkupΔtrkΔkdp to metabolize various amino acids properly. Moreover, the reactive oxygen species resistance of the triple mutant was significantly reduced in comparison to the wild type, making it susceptible to one essential part of the innate immune response. Finally, the triple and the double mutant were strongly impaired in Galleria mellonella killing giving first insights in the importance of K+ uptake in virulence.


Asunto(s)
Acinetobacter baumannii , Mariposas Nocturnas , Acinetobacter baumannii/genética , Aminoácidos , Animales , Humanos , Fenotipo , Virulencia
19.
Environ Microbiol ; 22(12): 5300-5308, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32929857

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.


Asunto(s)
Acinetobacter baumannii/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Cardiolipinas/biosíntesis , Farmacorresistencia Bacteriana , Fosfolipasa D/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lisofosfolípidos/biosíntesis , Mutación , Fosfolipasa D/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Environ Microbiol ; 22(12): 5156-5166, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32618111

RESUMEN

The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.


Asunto(s)
Acinetobacter baumannii/fisiología , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Acinetobacter baumannii/genética , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Calor , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Cloruro de Sodio/metabolismo , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...